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Abstract

Throughout the United States, air pollution correlates with adverse health outcomes, and 

cardiovascular disease incidence is commonly increased following environmental exposure. In 

areas surrounding active mountaintop removal mines (MTM), a further increase in cardiovascular 

morbidity is observed and may be attributed in part to particulate matter (PM) released from the 

mine. The mitochondrion has been shown to be central in the etiology of many cardiovascular 

diseases, yet its roles in PM-related cardiovascular effects are not realized. In this study, we 

sought to elucidate the cardiac processes that are disrupted following exposure to mountaintop 

removal mining particulate matter (PMMTM). To address this question, we exposed male Sprague-

Dawley rats to PMMTM, collected within one mile of an active MTM site, using intratracheal 

instillation. Twenty-four hours following exposure, we evaluated cardiac function, apoptotic 

indices, and mitochondrial function. PMMTM exposure elicited a significant decrease in ejection 

fraction and fractional shortening compared with controls. Investigation into the cellular impacts 
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of PMMTM exposure identified a significant increase in mitochondrial-induced apoptotic 

signaling, as reflected by an increase in TUNEL-positive nuclei and increased caspase-3 and -9 

activities. Finally, a significant increase in mitochondrial transition pore opening leading to 

decreased mitochondrial function was identified following exposure. In conclusion, our data 

suggest that pulmonary exposure to PMMTM increases cardiac mitochondrial-associated apoptotic 

signaling and decreases mitochondrial function concomitant with decreased cardiac function. 

These results suggest that increased cardiovascular disease incidence in populations surrounding 

MTM mines may be associated with increased cardiac cell apoptotic signaling and decreased 

mitochondrial function.
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NEW & NOTEWORTHY

We describe for the first time cardiac and mitochondrial dysfunction following an 

acute pulmonary exposure to a unique particulate matter, which arises from the 

process of mountain-top removal, common in surface mining operations. Our 

findings suggest enhanced cardiac risk for populations living in close proximity to 

mountaintop mining operations.

The world health organization estimates that 3.7 million premature deaths a year are 

attributed to ambient air pollution (75). While the lungs are the primary tissue impacted by 

air pollution exposure, more than 80% of these deaths are due to cardiovascular disease (75). 

Throughout the United States, decreased air quality correlates with adverse health effects, 

including negative cardiovascular end points (57, 60, 61, 64). Although chronic exposure to 

air pollution is the 13th leading cause of worldwide mortality (76), short-term particulate 

matter (PM) exposure has also been suggested to contribute to tens of thousands of deaths 

within the United States (60, 70c). Air pollution is a complex mixture of many compounds, 

including PM, and epidemiological data link PM concentration to adverse cardiovascular 

effects (84). PM itself is a heterogeneous mixture of particles that vary in size, chemical 

composition, and origin; nevertheless, persistent PM formation creates a near-universal 

inhalation exposure. Although PM exposure is widespread, the makeup of this material 

varies considerably based on origin and geographical region (70c). These differing 

compositions may play a distinct role in adverse cardiovascular end points associated with a 

specific geographic locale (22).

The United States is among the most active coal-producing countries in the world (28), and 

coal mining is projected to increase over the next 25 years (70a). The Appalachian region, 

which extends from southern New York to Mississippi and Georgia following the 

Appalachian Mountains, contains more than eight hundred active coal mines, accounting for 

30% of US mining activity (70b). Due to its inherent less labor-intensive methods, surface 

mining is beginning to outnumber traditional underground mining two to one (70b). One 

popular, less labor-intensive method of surface mining is mountaintop removal mining 

(MTM), which utilizes explosives to remove the mountaintop, freeing underlying coal 
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seams, allowing easier extraction. Economically and ecologically, the technique is 

controversial, but few studies have begun to investigate the human health impacts in areas 

surrounding MTM sites. The PM generated by the MTM process contains toxicants that are 

environmentally biopersistent (55), suggesting potential for negative health effects.

Although the goal of industrial processes is to abate dust generation, fugitive dust from 

explosive treatment as well as combustion particles from heavy equipment create a unique 

PM (PMMTM). Epidemiologically, health effects of coal mining have been outlined (81, 88), 

but, until recently, no comparisons had been drawn between areas surrounding underground 

and MTM sites. Studies have reported that PMMTM causes an increase in chronic 

cardiovascular disease mortality rates among populations in close proximity to active MTM 

sites (28). However, the mechanisms underlying this observation are poorly understood. We 

have previously reported that acute pulmonary exposure to PMMTM in rodents is linked to 

microvascular dysfunction in extrapulmonary tissue (36). However, studies on cardiac tissue 

have not been undertaken.

The mitochondrion has been implicated in the etiology of many cardiovascular diseases 

because of the crucial roles it plays within the cardiomyocyte. Among the central roles for 

the mitochondrion are the production of ATP requisite for cardiac contraction and relaxation 

as well as its contribution to the signals initiating cellular apoptosis. In vivo and in vitro 

analyses have revealed an increase in apoptosis in numerous tissues following PM exposure 

(2, 16, 85, 86). Two pathways reported to activate the apoptotic cascade include the extrinsic 

pathway via caspase-8 and the intrinsic pathway involving the mitochondrion. In the 

intrinsic pathway, opening of the mitochondrial permeability transition pore (mPTP) allows 

uncoupling of the electron transport chain, leading to mitochondrial dysfunction and 

formation of the apoptosome (31). In vitro evidence suggests that both extrinsic and intrinsic 

pathways are activated following PM exposure (20). Nevertheless, it is unclear whether 

acute PMMTM exposure is associated with mitochondrial dysfunction or enhanced initiation 

of the apoptotic cascade.

The goals of the present study were to determine whether acute PMMTM exposure is 

associated with cardiac and mitochondrial dysfunction and to elucidate whether these effects 

were associated with mitochondrial-associated apoptosis initiation with an emphasis on the 

cardiomyocyte. Our results suggest that acute PMMTM exposure is associated with an 

increase in mitochondrial-driven apoptotic signaling, which may contribute to cardiac and 

mitochondrial dysfunction. These findings lend insight into the potential mechanisms 

underlying acute PMMTM exposure effects in the heart.

MATERIALS AND METHODS

Experimental animals

The animal experiments in this study were approved by the West Virginia University 

Animal Care and Use Committee and conformed to the most current National Institutes of 

Health (NIH) Guidelines for the Care and Use of Laboratory Animals manual. Male 

Sprague-Dawley rats were housed in the West Virginia University Health Sciences Center 

animal facility. Rats were given access to a rodent diet and water ad libitum.
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PMMTM preparation

PM was collected on 35-mm, 5-μm pore size polytetrafluoroethylene fiber-backed filters 

(Whatman, Springfield Mill, UK) for 2–4 wk at two sites within 1 mile of an active MTM 

site. Particle storage and extraction from the filters following collection are consistent with 

previous reports (24). Briefly, filters were stored at room temperature (20–25°C) and 

ambient humidity (10–30%) before extraction. PM extraction was accomplished by gentle 

agitation in ultrapure water for 96 h. Particle suspension aliquots were then dried in a 

Speedvac (Savant, Midland, MI), and total particle weight was determined using a 

microbalance (Metler-Toledo, Columbus, OH).

Intratracheal instillation

Intratracheal instillation was performed according to the method of Brain et al. (4) as 

previously described (36, 45, 46, 49, 50). Briefly, following anesthesia with isoflurane, a 

ball needle attached to a 1-ml tuberculin syringe was inserted under the glottis into the 

trachea, and 300 μl of either vehicle (5% fetal bovine serum in phosphate-buffered saline) or 

vehicle with 300 μg of PMMTM was instilled directly into the trachea. We have previously 

shown that this dose of PMMTM partially impaired endothelium-dependent microvascular 

dysfunction (36). The PM characterization and resuspension were carried out as described 

previously (36).

Cardiac contractile function

Twenty-four hours following exposure, echocardiography was utilized to assess cardiac 

contractile function. For echocardiographic assessment, each rat was anesthetized in a 

knockdown box with inhalant isoflurane at 2.5% in 100% oxygen. Following anesthesia, 

ultrasound images were acquired with a 25-MHz linear array transducer using the Vevo2100 

Imaging System (Visual Sonics, Toronto, Ontario, Canada). M-mode images were acquired 

by placing the transducer to the left of the sternum and obtaining an image at the mid-

papillary muscle level. A gate was placed through the center of the short-axis B-mode image 

to obtain M-mode recordings of contractile parameters of the myocardium. Images were 

acquired using the highest possible frame rate (233–401 frames/s). Measurements obtained 

from left ventricular M-mode images included end-diastolic and end-systolic diameters and 

volumes, fractional shortening, ejection fraction, stroke volume, and cardiac output. All M-

mode image measurements were calculated over three consecutive cardiac cycles and 

averaged.

Tissue preparation and compartment isolation

After cardiac contractile measurements were performed, rats were euthanized and hearts 

excised. Atrial and right ventricular tissues were removed, and left ventricular tissue was 

utilized for the studies. Cytosolic isolation was performed as previously described (77). 

Subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) subpopulations 

were isolated as previously described following the methods of Palmer et al. (54) with minor 

modifications by our laboratory (4, 5, 14, 15, 17, 18, 70, 77). Mitochondrial pellets were 

resuspended in KME buffer (100 mM KCl, 50 mM MOPS, and 0.5 mM EGTA pH 7.4) and 
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utilized for all analyses. Protein concentrations were determined by the Bradford method 

using bovine serum albumin as a standard (8).

TUNEL staining

Terminal dUTP nick-end labeling (TUNEL) was performed to detect apoptotic nuclei in 

tissue cross sections, as previously described (32, 74). Briefly, frozen tissue (10 μm thick) 

cross sections of left ventricle were mounted on charged microscope slides (Fisher 

Scientific, Pittsburgh, PA), air dried, and incubated overnight at 4°C with mouse anti-heavy 

chain cardiac myosin antibody (no. ab50967; Abcam, Cambridge, MA). Sections were then 

incubated with goat anti-mouse Cy5-conjugated secondary antibody (no. ab6563; Abcam), 

fixed with 4% paraformaldehyde, and permeabilized with 0.1% Triton X-100 in PBS at 4°C. 

Sections were incubated with the TUNEL reaction mixture (Roche Diagnostics, 

Indianapolis, IN) in a humidified chamber in the dark. The exclusion of the TdT enzyme in 

the TUNEL reaction mixture on one of the tissue sections on each slide was included as a 

negative control (Fig. 1A). Treatment of one tissue section on each slide with DNase I (Life 

Technologies, Carlsbad, CA) was included as a positive control (Fig. 1B). Sections were 

mounted and stained with a mounting medium containing DAPI (Vectashield; Vector 

Laboratories, Burlingame, CA) to observe nuclei. Slides were then visualized under a Zeiss 

Axio Imager Z2 (Carl Zeiss Microimaging, Thornwood, NY). The number of TUNEL- and 

DAPI-positive nuclei were counted, and the data were expressed as an apoptotic index, 

which was calculated as the percentage of TUNEL-positive nuclei relative to the total 

myonuclei (i.e., DAPI-positive nuclei) pool. The apoptotic index was determined from four 

nonoverlapping regions of each tissue cross section.

Histone ELISA

Cytoplasmic histone-associated DNA fragments related to apoptosis were quantified 

utilizing the Cell Death Detection ELISAPLUS kit (no. 11774425001; Roche Diagnostics). 

This photometric enzyme immunoassay, which is used for the quantitative determination of 

mono- and oligonucleosomes after cell death, was carried out per the manufacturer’s 

instructions.

Western blotting

SDS-PAGE was run on 4–12% gradient gels, as previously described (4, 5, 17, 18, 43, 70, 

77). Relative amounts of activated caspase-3, -9, and -8 were determined using specific 

antibodies: anti-caspase-3 rabbit antibody (no. 3016-100; Biovision, Milpitas, CA), anti-

caspase-9 rabbit antibody (no. 9665; Cell Signaling Technology, Danvers, MA), and anti-

caspase-8 goat antibody (no. Sc6134; Santa Cruz Biotechnology, Dallas, TX). Relative 

amounts of B-cell CLL/lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), apoptosis 

protease-activating factor 1 (APAF-1), and cytochrome c were determined using specific 

antibodies: anti-Bcl-2 mouse antibody (no. sc-7382; Santa Cruz Biotechnology), anti-Bax 

rabbit antibody (no. ab32503; Abcam), anti-APAF-1 rabbit antibody (no. ab2000; Abcam), 

and anti-cytochrome c rabbit antibody (no. 4272; Cell Signaling Technology). Relative 

amounts of mitochondrial permeability transition pore constituents, adenine nucleotide 

translocase (ANT), voltage-dependent anion channel (VDAC), and cyclophilin D (CypD) 
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were determined using specific antibodies: anti-ANT goat antibody (no. sc-9300; Santa Cruz 

Biotechnology), anti-VDAC rabbit antibody (no. 4866; Cell Signaling Technology), and 

anti-CypD rabbit antibody (no. PA1-028; Affinity Bioreagents, Golden, CO). The secondary 

antibodies used included: goat anti-mouse IgG horseradish peroxidase (HRP) conjugate (no. 

31430; Pierce Biotechnology, Rockford, IL), goat anti-rabbit IgG HRP conjugate (no. 

10004301; Cayman Chemical, Ann Arbor, MI), and donkey anti-goat IgG HRP conjugate 

(no. sc-2020; Santa Cruz Biotechnology). Pierce Enhanced Chemiluminescence Western 

Blotting substrate (Pierce) was used to detect signal following the manufacturer’s 

instructions. A G:Box Bioimaging system (Syngene, Frederick, MD) was used to assess 

autoradiographic signals. Data were captured using GeneSnap/GeneTools software 

(Syngene), and densitometry was analyzed using Image J software (National Institutes of 

Health, Bethesda, MD). Controls for protein loading included anti-GAPDH mouse antibody 

(no. ab8245; Abcam) for cytosolic analyses and anti-COXIV rabbit antibody for 

mitochondrial analyses (no. ab16056; Abcam).

Caspase activation

Caspase activities were assessed as previously described (77, 78). Briefly, whole left 

ventricular tissue was homogenized in the absence of a protease inhibitor cocktail to enable 

assessment of caspase-3, caspase-8, and caspase-9 activities. All of the activities were 

measured in a caspase activation buffer containing 4.8 mmol PIPES, 0.1 mmol EDTA, and 

10% glycerol. For each enzyme activity assay, specific substrates were added: caspase-3, 

Ac-DEVD-AFC (Alexis Biochemicals, San Diego, CA); caspase-8, Ac-IETD-AMC (Alexis 

Biochemicals); and caspase-9, Ac-LEHD-AFC (Alexis Biochemicals). An aliquot (100 μg) 

of each sample was loaded with the appropriate substrate and allowed to incubate for 2 h in 

the dark at 37°C. Samples were read fluorometrically using a Flexstation 3 plate reader 

(Molecular Devices, Sunnyvale, CA). Fluorometric measurements were performed at 

excitation/emission wavelengths of 400 nm/505 nm and expressed in relation to protein 

content.

Immunoprecipitation

Isolated mitochondrial protein was incubated overnight with a primary anti-Bax rabbit 

antibody (no. ab32503; Abcam). Dynabeads Protein G superparamagnetic beads (product 

No. 10003D; ThermoFisher Scientific, Waltham, MA) were then added to the sample 

mixture and allowed to incubate for 1 h. After the beads were washed, the protein was 

eluted, heated, and run through SDS-PAGE as described above. Following SDS-PAGE, 

immunoblotting for relative amounts of Bcl-2 and Bax were accomplished as described 

above.

mPTP opening

mPTP opening was performed as previously described by measuring mitochondrial swelling 

spectrophotometrically (540 nm) and observing the decrease in light scattering (1, 77). 

Treatment of freshly isolated mitochondrial subpopulations with 100 μM tert-butyl 

hydroperoxide (t-BuOOH), 400 μM Ca2+, and 10 mM succinate induced swelling and was 

followed using a Flexstation 3 plate reader (Molecular Devices). As an assay control, 1 μM 

cyclosporin A, a specific mPTP inhibitor, was added to the reaction mixture.
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Mitochondria size and internal complexity

Size and complexity of the mitochondria were analyzed as previously described (18, 19) 

using a FACS Calibur flow cytometer equipped with a 15-MW 488-nm argon laser and 633-

nm red diode laser (Becton and Dickinson, San Jose, CA). Each individual parameter 

(gating, size, and complexity) was measured using specific detectors and light sources (laser, 

photomultiplier tube). The dye MitoTracker Deep Red (no. M22426, Life Technologies), 

which passively diffuses into intact mitochondria, was used to selectively stain for 

mitochondria. Freshly isolated mitochondrial subpopulations were incubated with the dye, 

and 20,000 gated events were analyzed per sample. Gating parameters were established, and 

the forward scatter detector (FSC; 488 nm argon laser and diode detector) and side scatter 

detector (SSC; photomultiplier tube and 90° collection lens) were represented in FSC and 

SSC density plots. To represent size, FSC (logarithmic scale) geometric mean (arbitrary 

units) was used; to represent complexity, SSC (logarithmic scale) geometric mean (arbitrary 

units) was observed. All flow cytometry data collection was supervised by the West Virginia 

University Flow Cytometry Core Facility.

Electron microscopy

A section of left ventricle was cut and fixed in 3% glutaraldehyde in sodium cacodylate 

buffer for electron microscopy images. Briefly, sections were postfixed by incubation with a 

1.0%/0.8% osmium tetroxide/potassium ferricyanide mixture (Electron Microscopy Science, 

Hatfield, PA), dehydrated through a graded series of ethanol solutions and acetone, and then 

embedded in Epon resin (SPI Supplies, Westchester, PA). Ultrathin sections (95 nm) were 

cut from the resulting blocks with a Leica EM UC7 ultramicrotome (Leica Biosystems, 

Buffalo Grove, IL) and then captured on 200 mesh copper electron microscopy grids. The 

sections were observed at 80 kV with a JEOL JEM-1010 electron microscope (JEOL USA, 

Peabody, MA) connected to an AMT XR611S-B (ORCA HR) digital camera driven by 

Image Capture Engine software (AMT, Woburn, MA) for image acquisition and analysis. 

All electron microscopy imaging was performed in conjunction with the West Virginia 

University Pathology Electron Microscopy Core Facility.

Mitochondrial respiration

State 3 and state 4 respiration rates were analyzed in freshly isolated mitochondrial 

subpopulations, as previously described (12, 13) with modifications by our laboratory (15, 

17, 19, 70). Briefly, isolated mitochondrial subpopulations were resuspended in KME 

buffer, and protein content was determined by the Bradford method (8). Mitochondrial 

protein was added to respiration buffer (80 mM KCl, 50 mM MOPS, 1 mmol/l EGTA, 5 

mmol/l KH2PO4, and 1 mg/ml BSA) and placed into a Gilson Chamber (Gilson, Middleton, 

WI) attached to a Yellow Springs Instruments 5300 biological oxygen monitor (Yellow 

Springs Instruments, Yellow Springs, OH). Maximal complex I-mediated respiration was 

initiated by the addition of glutamate (5 mM) and malate (5 mM). Data for state 3 (250 mM 

ADP) and state 4 (ADP limited) respiration were expressed as nanomoles of oxygen 

consumed per minute per milligram of protein.
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Statistics

Means and SE were calculated for all data sets. A Student’s t-test was employed to analyze 

differences between treatment groups using GraphPad Prism 5 software (GraphPad 

Software, La Jolla, CA). P < 0.05 was considered significant.

RESULTS

Cardiovascular function following PMMTM exposure

Although overt cardiac dysfunction is not commonly an end point of PM exposure, acute 

PM exposure has been linked to cardiac stress (60); thus we began our investigation by 

evaluating cardiac function using echocardiography. Twenty-four hours following acute 

PMMTM exposure, a significant increase in both end-systolic volume and diameter was 

observed, but no significant changes in end-diastolic parameters were noted (Table 1). Acute 

PMMTM exposure led to decreases in ejection fraction and fractional shortening compared 

with control animals (Table 1).

Apoptotic signaling following PMMTM exposure

Cardiac contractile dysfunction is associated with cell death; therefore, we determined 

whether acute PMMTM exposure triggered apoptotic signaling in the heart. Cardiomyocytes 

from PMMTM-exposed animals (Fig. 1D) displayed an increase in TUNEL-positive nuclei, 

which fluorescently labels DNA nicks, compared with control animals (Fig. 1C), suggestive 

of an increase in damage downstream of apoptotic signaling. Summary data for TUNEL-

positive nuclei in both control and PMMTM-exposed hearts can be seen in Fig. 1E. To 

confirm apoptotic initiation, we determined cytosolic histone content following PMMTM 

exposure and found that exposure significantly increased histone concentrations (Fig. 1F).

Downstream signals of the apoptotic pathway may be differentially activated depending on 

the pathway of apoptosis initiated by a given stressor. Among the signaling pathways 

responsible for the apoptosis cascade are those driven by the extrinsic mechanism 

(caspase-8) as well as those driven by the intrinsic mechanism via the mitochondrion 

(caspase-9 and caspase-3) (56). No increase in the activity of caspase-8 was observed, 

suggesting that the extracellular pathway of apoptotic induction is not activated following 

PMMTM exposure (Fig. 2A). In contrast, PMMTM exposure enhanced the activity of both 

caspase-9 (Fig. 2B) and caspase-3 (Fig. 2C). These findings were supported by 

immunoblotting analysis of relative active caspase concentrations, which suggested an 

increase in caspase-3 (Fig. 2F) and caspase-9 (Fig. 2E) relative to control with no change in 

caspase-8 (Fig. 2D) following PMMTM exposure. These findings indicate that the 

mitochondrion may play a role in the induction of cardiac apoptotic signals following acute 

PMMTM exposure.

Apoptosome formation requires a number of molecular constituents, including APAF-1 and 

cytochrome c (83). Western blot analyses on the cytosolic fraction of left ventricular tissue 

from acute PMMTM-exposed animals revealed a significant increase in APAF-1 content 

compared with control animals (Fig. 3A). Concurrently, there was an increase in the 

cytosolic cytochrome c content following acute PMMTM exposure (Fig. 3B), confirming a 
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role of the mitochondrion in cardiac cell apoptotic signaling. Evaluation of mitochondrial 

cytochrome c content following acute PMMTM exposure revealed a significant decrease in 

the SSM subpopulation (Fig. 3C) without impact on the IFM subpopulation (Fig. 3D). 

Taken together, these findings suggest an enhanced release of cytochrome c from cardiac 

SSM following acute PMMTM exposure, which leads to apoptosome formation and 

mitochondrially driven apoptotic initiation.

To complement our apoptotic signaling analyses, we examined additional nonspecific 

cellular markers of apoptosis. BH3 proteins are a class of both pro- and antiapoptotic 

proteins found within the cytosol that are differentially expressed following cellular damage 

and act to either prevent or propagate apoptosis. Examination of the antiapoptotic protein 

Bcl-2 revealed a significant decrease following acute PMMTM exposure (Fig. 4A). In 

contrast, no significant difference in the relative content of its antagonistic proapoptotic Bax 

protein was noted (Fig. 4B). The decrease in Bcl-2 led to a significant increase in the 

Bax:Bcl-2 ratio (Fig. 4C), suggesting a proapoptotic cellular environment. Bcl-2 and Bax are 

able to counteract each other’s actions by forming dimers, either hetero or homo, to 

complete their anti- or proapoptotic activities. Therefore, it is the dimerization of these 

proteins that suggests mitochondrial apoptotic signaling. Immunoblotting for Bax following 

immunoprecipitation with an anti-Bax antibody indicated that there is an increase in 

Bax:Bax dimerization following exposure (Fig. 4E). When investigating the Bax:Bcl-2 

dimerization, we observed no significant difference in the levels of Bcl-2 following 

pulldown with Bax in the animals exposed to PMMTM (Fig. 4D). These results led us to 

observe an increase in the proapoptotic Bax:Bax homodimerization, compared with the 

antiapoptotic Bax:Bcl-2 heterodimerization following exposure to PMMTM (Fig. 4F). These 

data further suggest that cardiac mitochondrial apoptotic signaling is increased following 

pulmonary PMMTM exposure.

mPTP opening propensity

Mitochondrial-initiated apoptotic signaling is associated with the opening of the mPTP (42). 

We investigated mPTP opening propensity by inducing mitochondrial swelling using an 

exogenous oxidant (t-BuOOH). When the mPTP is open, the space that is occupied by the 

mitochondrial matrix is increased, and the time to Vmax represents the rate of pore opening. 

Relative absorbance plots are presented for mPTP opening in SSM (Fig. 5A) and IFM (Fig. 

5C). Each plot includes control, acute PMMTM exposure, and an internal control consisting 

of cyclosporin A treatment, which limits mPTP opening. In general, IFM displayed greater 

times to Vmax compared with SSM (Fig. 5, B and D; open bars), which is in agreement with 

other reports (1, 77). The time to Vmax was significantly decreased in the SSM 

subpopulation following acute PMMTM exposure (Fig. 5B). In contrast, mPTP opening 

propensity was not significantly altered in IFM following acute PMMTM exposure (Fig. 5D). 

These results suggest that mPTP opening propensity is enhanced following acute PMMTM 

exposure only in the SSM subpopulation, and, as a result, SSM are more susceptible to 

oxidant-induced apoptotic stimuli.
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mPTP opening constituents

Because of the observed enhanced mPTP opening propensity, we determined whether 

putative constituents of the pore were affected following acute PMMTM exposure. 

Specifically, we assessed the contents of ANT, VDAC, and CypD in both mitochondrial 

subpopulations. Acute PMMTM exposure induced no change in VDAC (Fig. 6, A and B) or 

ANT (Fig. 6, C and D) in either mitochondrial subpopulation. In contrast, an increase in the 

levels of the regulatory subunit CypD was noted in the SSM (Fig. 6E) following acute 

PMMTM exposure with no significant change in the IFM (Fig. 6F). These results indicate an 

increase in the CypD content in the SSM following acute PMMTM exposure, which may 

contribute to the increased pore opening propensity.

Mitochondrial subpopulation morphology

mPTP opening is associated with morphological changes to the mitochondrion (31). To 

assess the impact of acute PMMTM exposure on mitochondrial morphology, we utilized flow 

cytometry to determine relative size and internal complexity, as previously described (15, 

17–19, 77). Using this approach, we have reported that SSM tend to be larger and more 

complex than IFM (15, 17, 18, 77), and data from the present study are in agreement with 

these reports (Fig. 7, A and B; open bars). In both the SSM and IFM, there were significant 

decreases in forward scatter (size) (Fig. 7A) and side scatter (internal complexity) (Fig. 7B) 

following acute PMMTM exposure. The results were surprising and indicate that both the 

SSM and IFM were smaller and had decreased internal complexity following acute PMMTM 

exposure, suggesting that mitochondrial morphology may be affected in both 

subpopulations. Qualitative assessment of electron micrographs of left ventricular tissues 

from control (Fig. 7C) and exposed animals (Fig. 7D) indicated that mitochondria were 

smaller following exposure, further supporting the data presented in Fig. 7A.

Mitochondrial respiratory function

Mitochondrial dysfunction is frequently concomitant with increased apoptotic signaling; 

therefore, we determined the respiratory capacity following acute PMMTM exposure through 

evaluation of state 3 and state 4 respiration rates. Representative respiratory plots for the 

SSM and IFM can be seen in Fig. 8, A and C, respectively. We observed a significant 

decrease in state 3 respiration (active) following acute PMMTM exposure in both the SSM 

(Fig. 8B) and IFM (Fig. 8D). No significant changes in the state 4 respiration, or resting 

respiration rate, in either subpopulation were noted following acute PMMTM exposure. 

These findings suggest that acute PMMTM exposure elicits disruption to respiratory capacity 

in both mitochondrial subpopulations.

DISCUSSION

Acute and chronic PM inhalation exposure contributes to and exacerbates cardiovascular 

disease and mortality (21, 70c). Within the Appalachian region, MTM activity creates a 

unique exposure, which, combined with mining longevity, may contribute to increased 

mortality from chronic diseases. Although epidemiological data are convincing, the 

underlying mechanisms responsible for increased morbidity following PMMTM exposure are 

relatively unexplored. Utilizing an acute pulmonary exposure model, we investigated the 
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effects of acute PMMTM exposure on cardiovascular function and metabolic disposition. Our 

data reveal decreases in cardiac pump function concomitant with increased mitochondria-

driven apoptotic signaling and decreased mitochondrial respiratory function.

Particle composition varies by region in the US, and this variability may underlie health 

disparities for a given geographical region. Characterization of the particles utilized in this 

study indicated elements and sizes similar to those resulting from the combination of 

mineralogical materials, as well as engine exhaust emission (36). MTM utilizes blasting, 

crushing, and grinding of materials, which are commonly accomplished and transported by 

heavy machinery burning off-road diesel fuel. Validation of the PM was accomplished in 

another study highlighting natural and exhaust emissions, primarily geological, surrounding 

opencast mines similar to MTM (35). The dominant size range was ultrafine to 0.2 μm, 

based on mass measurement, and the principal particle composition was likely crustal with a 

bulk of particles appearing anthropogenic in origin (79). Previous elemental analyses 

support the notion that the bulk of the particle was from crustal sources (36). Further 

confirmation of composition was obtained by comparing PM from MTM sites and non-

MTM sites and observing crustal material enriched within the surface mining samples by 

factors greater than 10 (39). These authors concluded that the PM was similar to coal dust 

and crustal material with the presence of local combustion sources. The authors also 

suggested that, because of the nature of the landscape surrounding the mines (steep valleys 

with lower wind speeds and less vertical mixing), there would be less PM transport, creating 

an increase in the inhaled deposited lung deposition and greater health effects (40). Whether 

or not these elements and observations are consistent with our observations remain to be 

determined in future experiments.

Although extrapulmonary toxicological effects are well documented, the mechanisms of 

toxicity are still under considerable debate. Three potential hypotheses have been advanced 

to explain extrapulmonary effects: 1) a systemic inflammatory response that is initiated in 

the lung, 2) translocation of the PM to extrapulmonary tissue, and 3) neural effects (9, 23). 

Studies in both murine and human models have identified proinflammatory markers in the 

circulation of exposed subjects, providing evidence that a pulmonary insult may stimulate a 

systemic inflammatory response (7, 33, 58, 62, 63, 68, 71, 73), which may contribute to 

downstream cardiovascular effects (47, 51). Data also exist suggesting PM translocation 

from the lung to the affected tissues (26, 38, 52, 53, 67). Pulmonary exposure damages lung 

epithelium, increasing permeability and enabling PM penetration from the gaseous exchange 

region, leading to escape into the circulation with subsequent impact on extrapulmonary 

tissues (48, 65). Finally, PM exposure may interfere with neuronal signaling and cardiac 

autonomic dysfunction following exposure (10, 11, 59). Although the hypotheses are 

scientifically independent, the mechanisms are not mutually exclusive and may overlap, 

propagating activation of additional mechanisms. Although these mechanisms have not been 

explored following PMMTM exposure, acute exposure to other PM has implicated a systemic 

inflammatory response (44). This question is not experimentally addressed in this study, but 

it is a crucial concept in fully understanding the interaction between pulmonary damage and 

extrapulmonary toxicity.
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Acute PM exposure has been shown to contribute to cardiovascular morbidity and mortality. 

To investigate the cardiac contractile response following acute PMMTM exposure, we 

utilized echocardiography and observed decreases in ejection fraction and fractional 

shortening, which were associated with increases in both end-systolic volume and diameter. 

One study investigating the effect of diesel exhaust particle inhalation exposure on cardiac 

function reported similar decreases in fractional shortening, yet this functional decrease was 

due to diastolic effects with an increase in end-diastolic diameter (82). Similarly, decreased 

fractional shortening following PM exposure was identified in senescent mice (69). Prenatal 

PM exposure reduced fractional shortening (30) and a chronic model of PM exposure 

decreased ejection fraction (80), demonstrating the detrimental role PM exposure plays in 

the progression of heart disease. Following PM exposure, overt cardiac dysfunction is not 

commonly observed in humans; however, cardiac remodeling occurs, indicating cardiac 

stress (72). Our results suggest conditions of early cardiac stress and alteration which, if 

maintained, may contribute to the onset and progression of cardiovascular disease.

To identify the cellular mechanisms contributing to cardiac contractile dysfunction 

following PM exposure, we focused on apoptotic signaling, the role of which has not been 

widely investigated in PM toxicology. Research into histological changes following oil 

combustion-derived, fugitive emission PM exposure indicated no change in cardiac cell 

apoptosis in a chronic model (37). It is unclear why these results differ from those in the 

present study, but it may be a function of differences in particle composition or a transient 

increased response, which ultimately triggers compensatory mechanisms to attenuate cell 

death. In addition, the activation of caspase cascades is a critical step in the induction of 

apoptosis, and our study identified increased cardiac caspase activity following PMMTM 

exposure. Activation of both caspase-8 and -9 in the lung following PM exposure has been 

reported (29). In the present study, activation of caspase-3 and -9 suggested a mitochondrial 

role in apoptotic signaling associated with PMMTM exposure. Additional studies are needed 

to determine whether these effects are specific to the cardiomyocyte. Interestingly, 

differences in absolute changes following PMMTM exposure were observed between the 

TUNEL staining and the caspase activity analyses, in which TUNEL staining revealed a 

greater overall change compared with caspase activation. It should be pointed out that the 

TUNEL measurements were performed by staining specifically for cardiomyocytes, whereas 

the caspase activities were conducted on whole heart tissue, which may have diluted the 

overall absolute change. Furthermore, TUNEL analyses tend to be more sensitive in terms of 

absolute detection resolution.

The mPTP is considered a key nodal point in mediating cardiac dysfunction and cellular 

death. Pore opening enables release of proapoptotic proteins, including cytochrome c. Our 

study revealed increased propensity for mPTP opening specifically in the SSM following 

PMMTM exposure. Although the constituents of the mPTP have been debated, CypD has 

been regarded as the regulatory subunit of the pore and necessary for pore opening (3). Our 

study revealed no difference in the content of putative pore constituents VDAC and ANT, 

yet we observed a significant increase in CypD content in the SSM following PMMTM 

exposure. These data support a hypothesis of increased pore opening propensity specific for 
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the SSM following PMMTM exposure. Differential subpopulation responses to apoptotic 

stimuli are consistent with other pathological models (1, 77).

Many studies indicate that mitochondrial spatial location may be associated with a specific 

response to pathological stimuli (34). Two spatially distinct mitochondrial subpopulations 

have been noted in the myocyte: SSM, which reside below the cell membrane, and IFM, 

which exist between the myofibrils. In the present study, SSM displayed increased apoptotic 

propensity following PMMTM exposure. In contrast, both mitochondrial subpopulations 

displayed decreased active respiration rates after PMMTM exposure. These findings indicate 

that, following PMMTM exposure, there could potentially be a spatial component to 

metabolic insult. Furthermore, these data suggest that SSM are impacted to a greater extent 

by PMMTM exposure, and, on the basis of their spatial position, we speculate that the 

primary source of cellular stress comes from outside the sarcolemma. SSM act as a 

protective barrier to the cell interior, maintaining permissive oxygen levels and the resulting 

cellular milieu (41, 66). We theorize that the impact to SSM supports the hypothesis that a 

pulmonary particle insult stimulates a systemic response, such as inflammation, which 

affects the cell at its periphery. It has been indicated that mitochondrial subpopulations can 

communicate across the cell, providing a platform for mitochondrial synchronization (87). 

The degree of interaction between these two subpopulations is of debate, but one hypothesis 

indicates that the innermost SSM and the outermost IFM are connected through 

mitochondrial filaments enabling metabolic coupling (66). If such a scenario were to exist, 

one could hypothesize that a significant insult at the SSM could stimulate dysfunction to the 

IFM.

In this study, we chose to use an acute exposure to PMMTM using intratracheal instillation at 

a dose that would be similar to an accumulated dose over 1.7 yr. This dose was based on 

ambient recorded concentrations of 8.3 μg/m3 and a minute ventilation of 200 ml/min with 

an estimated deposition fraction of 0.2 and was chosen because previous effects have been 

observed (36). Given that our model resembles a young, healthy population, our findings 

may be of even greater significance to older populations and populations with preexisting 

conditions. It should be noted that other methods of pulmonary exposure (e.g., inhalation), 

as well as a chronic model, may be more translationally relevant. This may be particularly 

applicable for heart failure, which can be influenced by mitochondrial dysfunction through 

bioenergetic deficit and myocyte apoptosis, both of which contribute to contractile 

dysfunction and cardiomyocyte loss. Because of the limited mass of PMMTM particle 

collected, more demanding exposure approaches were not possible. Also because of the 

limited particle mass, elemental analysis was not undertaken; thus conclusions between 

elements and their contribution to the reported observations were not drawn. Indeed, future 

studies should employ inhalation exposure and in-depth elemental analysis to couple effects 

with a specific toxicant. Nevertheless, investigations into the acute effects of PMMTM 

exposure are not without value, as they provide insight into the potential toxicological 

mechanisms elicited by PMMTM exposure.

Although the current study is aimed at the populations proximal to MTM sites, our findings 

could provide a broader impact on our understanding of cardiovascular toxicology. The data 

presented in this manuscript show for the first time that exposure to PMMTM induces cardiac 
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dysfunction concomitant with increased mitochondrial-associated apoptotic signaling and 

decreased mitochondrial function. Furthermore, our findings suggest that there is a spatial 

component to this dysfunction, as evidenced by differential effects to spatially distinct 

mitochondrial subpopulations.
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Fig. 1. 
Cardiac apoptotic index following mountaintop removal mining particulate matter (PMMTM) 

exposure. Representative fluorescent images of cardiac tissue. A: negative control with 

exclusion of TdT enzyme. B: positive control with inclusion of DNase I. C: control with 

vehicle instillation. D: exposure with PMMTM instillation. DAPI-stained nuclei are indicated 

in blue, whereas terminal dUTP nick-end labeling (TUNEL)-positive nuclei are shown in 

green, and red indicates heavy chain cardiac myosin. Scale bar = 50 μm. E: apoptotic index 

was calculated as the percentage of total cardiomyocyte nuclei that were TUNEL-positive 

nuclei. Values are means ± SE; n = 3 for each group. F: relative cytosolic histone 

concentrations determined by ELISA on left ventricular tissue from control and PMMTM-

exposed animals. Values are means ± SE; n = 5 for each group. *P < 0.05 for control vs. 

exposed.
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Fig. 2. 
Cardiac caspase activities and content following PMMTM exposure. Fluorometric analysis of 

enzymatic activities of caspase-8 (A), caspase-9 (B), and caspase-3 (C) from the cytosol of 

rat left ventricles exposed by instillation to either vehicle control or PMMTM. Data are 

expressed as arbitrary units (AU). Relative protein contents of activated caspases from 

cytosolic fractions from left ventricles of rats exposed by instillation to either vehicle control 

or PMMTM. Representative Western blots (top) and densitometric analyses (bottom) for total 

protein content of caspase-8 (D), caspase-9 (E), and caspase-3 (F). All Western blots are 

expressed per GAPDH levels. Values are means ± SE; n = 6 for each group. *P < 0.05 for 

control vs. exposed.
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Fig. 3. 
Apoptosome constituent contents. Relative protein contents of apoptosome constituents 

from cytosol and isolated mitochondrial subpopulations from left ventricles of rats exposed 

by instillation to either vehicle control or PMMTM. Representative Western blots (top) and 

densitometric analyses (bottom) for total protein content of cytosolic apoptosis protease 

activating factor 1 (APAF1) (A), cytosolic cytochrome c (Cyto C) (B), cytochrome c in the 

subsarcolemmal mitochondria (SSM) (C), and cytochrome c in the interfibrillar 

mitochondria (IFM) (D). Cytosolic proteins (A and B) were expressed per GAPDH levels, 

whereas mitochondrial analyses (C and D) were expressed per COX IV levels. Values are 

means ± SE; n = 8 for each group. *P < 0.05 for control vs. exposed.
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Fig. 4. 
Bcl-2-associated X protein (Bax) and B-cell lymphoma 2 (Bcl-2) protein contents. Relative 

protein contents of total cell markers of apoptosis from left ventricles of rats exposed by 

instillation to either vehicle control or PMMTM. Representative immunoblots (top) and 

densitometric analyses (bottom) for cytosolic Bax (A) and Bcl-2 (B). C: ratio of 

densitometric analysis of Bax to Bcl-2. Western blots are expressed per GAPDH levels. 

Immunoblots from coimmunoprecipitation with Bax suggesting the formation of hetero-or 

homodimers with Bcl-2 (D) or Bax (E). Ratio of densitometric analysis of Bax dimers with 

Bax to Bcl-2 (F). Values are means ± SE; n = 8 for each group, *P < 0.05 for control vs. 

exposed.
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Fig. 5. 
Mitochondrial permeability transition pore (mPTP) opening propensity. mPTP opening 

propensity from left ventricles of rats exposed by instillation to either vehicle control or 

PMMTM. Spectrophotometric analysis of mPTP opening propensity using the exogenous 

oxidant tert-butyl hydroperoxide (t-BuOOH) to induce mitochondrial swelling. Time to 

Vmax was assessed over a 15-min time period. Representative absorbance plots for SSM (A) 

and IFM (C). Solid lines represent control, dashed lines represent exposed, and dotted lines 

represent the internal control, cyclosporine A (CsA) treatment. Vmax data graphed for SSM 

(B) and IFM (D). Values are means ± SE; n = 6 for each group. *P < 0.05 for control vs. 

exposed.
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Fig. 6. 
mPTP components. Relative protein content assessed by Western blotting of putative 

members of the mPTP from left ventricles of rats exposed by instillation to either vehicle 

control or PMMTM. Representative Western blots (top) and densitometric analyses (bottom) 

for total voltage-dependent anion channel (VDAC) in SSM (A) and in IFM (B), adenine 

nucleotide translocase (ANT) in SSM (C) and IFM (D), and cyclophilin D (CypD) in SSM 

(E) and IFM (F). All Western blots are expressed per COX IV levels. Values are means ± 

SE; n = 8 for each group. *P < 0.05 for control vs. exposed.
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Fig. 7. 
Mitochondrial morphological assessment. Relative size and internal complexity were 

analyzed using mitotracker deep red 633 and flow cytometry. A: analysis of cardiac SSM 

and IFM size (forward scatter, FSC) in control and exposed mitochondria subpopulations. B: 

analysis of cardiac SSM and IFM internal complexity (side scatter, SSC) in control and 

exposed mitochondrial subpopulations. Representative electron micrographs of left ventricle 

tissue from control (C) and PMMTM exposed (D) animals. Values for both FSC and SSC are 

expressed as AU ± SE; n = 8 for each group. *P < 0.05 for control vs. exposed.
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Fig. 8. 
Mitochondrial respiratory capacity. Representative polarographic traces of oxygen 

consumption following addition of glutamate and malate to SSM (A) and IFM (C). Solid line 

traces represent mitochondria from control, and dashed line traces represent mitochondria 

from PMMTM-exposed animals. Summary analyses of state 3 and state 4 respiration rates 

from trace measurements of SSM (B) and IFM (D). Respiration rates are expressed in 

nmol·min−1·mg protein−1. Values are means ± SE; n = 6 for each group. *P < 0.05 for 

control vs. exposed animals.
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Table 1

M-mode echocardiographic measurements

Parameter Control Average ± SE Exposed Average ± SE

Heart weight, mg 743.00 ± 39.39 837.00 ± 51.00

Body weight, g 299.63 ± 8.94 288.5 ± 1.50

Heart weight:body weight 2.51 ± 0.18 2.90 ± 0.19

Heart rate, beats/min 416.60 ± 10.38 403.54 ± 10.05

Systolic diameter, mm 2.29 ± 0.09 2.71 ± 0.18*

Diastolic diameter, mm 5.62 ± 0.08 5.84 ± 0.18

Systolic volume, μl 18.66 ± 1.97 29.46 ± 5.08*

Diastolic volume, μl 155.39 ± 5.22 171.61 ± 12.12

Stroke volume, μl 136.73 ± 5.54 142.15 ± 8.84

Ejection fraction, % 87.88 ± 1.25 83.53 ± 1.98*

Fractional shortening, % 59.16 ± 1.76 53.89 ± 2.09*

Cardiac output, ml/min 57.15 ± 3.16 57.33 ± 3.79

Values are means ± SE; n = 10 for each group.

*
P < 0.05 for control vs. exposed animals.
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